Can the performance of low-complexity video
understanding models be improved by supplementing
training with additional information about temporal
regularities in a dataset?

We explore this in the domains of action recognition and action

anticipation, over egocentric videos.

e \We introduce The Event Transition Matrix (ETM), computed from action
labels In an untrimmed video dataset, which captures the temporal context
of a given action.

e \We show that including ETM information during training improves
action recognition and anticipation performance on various egocentric
video datasets.
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How do we build the ETM?

We combine information from all previous and subsequent events, weighted by
their temporal distance from the queried action, capturing long-range

relationships among events. This temporal distance can be measured Iin two
ways: time or number of events, with different tradeoffs.
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